To solve the problem, we need to evaluate the sum f(12023)+f(22023)+…+f(20222023) where f(x)=22x22x+2.
Step 1: Simplify the function f(x)
We start with the function:
f(x)=22x22x+2
We can rewrite 22x as 4x:
f(x)=4x4x+2
Step 2: Find f(1−x)
Next, we will find f(1−x):
f(1−x)=41−x41−x+2=44x44x+2=44+2⋅4x
Step 3: Compute f(x)+f(1−x)
Now we will compute f(x)+f(1−x):
f(x)+f(1−x)=4x4x+2+44+2⋅4x
To combine these fractions, we find a common denominator:
=4x(4+2⋅4x)+4(4x+2)(4x+2)(4+2⋅4x)
Step 4: Simplify the numerator
Expanding the numerator:
=4x+1+2⋅42x+4x+1+8(4x+2)(4+2⋅4x)
=2⋅4x+1+2⋅42x+8(4x+2)(4+2⋅4x)
Factoring out 2:
=2(4x+1+42x+4)(4x+2)(4+2⋅4x)
Step 5: Evaluate f(x)+f(1−x)
Notice that f(x)+f(1−x)=1:
f(x)+f(1−x)=1
Step 6: Sum f(k2023)
Now, we can compute the sum:
f(12023)+f(22023)+…+f(20222023)
We can pair the terms:
f(k2023)+f(2023−k2023)=1
Since there are 2022 terms, we can pair them up:
Number of pairs=20222=1011
Step 7: Final Result
Thus, the total sum is:
1011⋅1=1011
Conclusion
The final answer is:
1011
f(x)=22x22x+2
f(x)=4x4x+2
f(1−x)=41−x41−x+2=44x44x+2=44+2⋅4x
f(x)+f(1−x)=4x4x+2+44+2⋅4x
=4x(4+2⋅4x)+4(4x+2)(4x+2)(4+2⋅4x)
=4x+1+2⋅42x+4x+1+8(4x+2)(4+2⋅4x)
=2⋅4x+1+2⋅42x+8(4x+2)(4+2⋅4x)
Factoring out 2:
=2(4x+1+42x+4)(4x+2)(4+2⋅4x)
f(x)+f(1−x)=1
f(12023)+f(22023)+…+f(20222023)
f(k2023)+f(2023−k2023)=1
Number of pairs=20222=1011
1011⋅1=1011
1011