• Tìm kiếm
india.tour.edu.vn
logo
  • 🎰 Slot Gacor Microstar88.MPO: Guide to Winning Big in 2025
  • Minahil Malik viral video full video link tiktokstar video | bilibili
  • Lily Phillips Claims to Break Record of Sex With 1113 Men in 12 Hours
  • Tã quần Merries nội địa size XXL 26+2 (15-28kg)
  • 20 Сute Baby Boy Haircuts
  • Jake Paul vs. Mike Tyson
  • Home
  • Uncategorized
CONFIRMED lineups: Barcelona vs Real Madrid, 2025 El Clasico

CONFIRMED lineups: Barcelona vs Real Madrid, 2025 El Clasico

05:30 04/07/2025

All set!

Lịch sử đối đầu MU vs Crystal Palace: Tỷ số đậm

Lịch sử đối đầu MU vs Crystal Palace: Tỷ số đậm

05:31 04/07/2025

Nicole Wallace (actress)

Nicole Wallace (actress)

05:31 04/07/2025

Lịch sử đối đầu MU vs Crystal Palace: Tỷ số đậm

Lịch sử đối đầu MU vs Crystal Palace: Tỷ số đậm

MU vs Crystal Palace không phải là hai đội bóng có sự kình địch lớn tại Premier League, nhưng mỗi lần chạm trán giữa họ đều mang đến những diễn biến đáng chú ý.

05:37 04/07/2025

🎰 Slot Gacor Microstar88.MPO: Guide to Winning Big in 2025

🎰 Slot Gacor Microstar88.MPO: Guide to Winning Big in 2025

In the Indonesian online gaming community, "gacor" is a term used to describe slot machines that are "hot" or have a high payout frequency. These machines are believed to offer better odds of winning, making them highly sought after by players.

05:40 04/07/2025

If y(x) = x^x , x gt 0 then y"(2) – 2y'(2) is equal to

If y(x) = x^x , x gt 0 then y"(2) – 2y'(2) is equal to

<p>To solve the problem, we need to find <span class="mjx-chtml MJXc-display" style="text-align: center;"><span class="mjx-math"><span class="mjx-mrow"><span class="mjx-msup"><span class="mjx-base" style="margin-right: -0.006em;"><span class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.225em; padding-bottom: 0.519em; padding-right: 0.006em;">y</span></span></span><span class="mjx-sup" style="font-size: 70.7%; vertical-align: 0.584em; padding-left: 0.082em; padding-right: 0.071em;"><span class="mjx-mo" style=""><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.298em; padding-bottom: 0.298em;">′′</span></span></span></span><span class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.446em; padding-bottom: 0.593em;">(</span></span><span class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.372em; padding-bottom: 0.372em;">2</span></span><span class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.446em; padding-bottom: 0.593em;">)</span></span><span class="mjx-mo MJXc-space2"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.298em; padding-bottom: 0.446em;">−</span></span><span class="mjx-mn MJXc-space2"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.372em; padding-bottom: 0.372em;">2</span></span><span class="mjx-msup"><span class="mjx-base" style="margin-right: -0.006em;"><span class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.225em; padding-bottom: 0.519em; padding-right: 0.006em;">y</span></span></span><span class="mjx-sup" style="font-size: 70.7%; vertical-align: 0.584em; padding-left: 0.082em; padding-right: 0.071em;"><span class="mjx-mo" style=""><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.298em; padding-bottom: 0.298em;">′</span></span></span></span><span class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.446em; padding-bottom: 0.593em;">(</span></span><span class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.372em; padding-bottom: 0.372em;">2</span></span><span class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.446em; padding-bottom: 0.593em;">)</span></span></span></span></span> for the function <span class="mjx-chtml MJXc-display" style="text-align: center;"><span class="mjx-math"><span class="mjx-mrow"><span class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.225em; padding-bottom: 0.519em; padding-right: 0.006em;">y</span></span><span class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.446em; padding-bottom: 0.593em;">(</span></span><span class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.225em; padding-bottom: 0.298em;">x</span></span><span class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.446em; padding-bottom: 0.593em;">)</span></span><span class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.077em; padding-bottom: 0.298em;">=</span></span><span class="mjx-msubsup MJXc-space3"><span class="mjx-base"><span class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.225em; padding-bottom: 0.298em;">x</span></span></span><span class="mjx-sup" style="font-size: 70.7%; vertical-align: 0.584em; padding-left: 0px; padding-right: 0.071em;"><span class="mjx-mi" style=""><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.225em; padding-bottom: 0.298em;">x</span></span></span></span></span></span></span>.</p><p><strong>Step 1: Find \( y'(x) \)</strong></p><p>We start by differentiating \( y(x) = x^x \). To do this, we can use logarithmic differentiation.</p><p>1. Take the natural logarithm of both sides: \( \ln y = \ln(x^x) = x \ln x \)</p><p>2. Differentiate both sides with respect to \( x \): \( \frac{1}{y} \frac{dy}{dx} = \ln x + 1 \)</p><p>3. Multiply through by \( y \): \( y' = y(\ln x + 1) = x^x(\ln x + 1) \)</p><p><strong>Step 2: Find \( y'(2) \)</strong></p><p>Now we substitute \( x = 2 \): \( y'(2) = 2^2(\ln 2 + 1) = 4(\ln 2 + 1) \)</p><p><strong>Step 3: Find \( y''(x) \)</strong></p><p>Next, we differentiate \( y'(x) \) to find \( y''(x) \). We will use the product rule: \( y' = x^x(\ln x + 1) \)</p><p>Using the product rule: \( y'' = \frac{d}{dx}(x^x) \cdot (\ln x + 1) + x^x \cdot \frac{d}{dx}(\ln x + 1) \)</p><p>We already found \( \frac{d}{dx}(x^x) = x^x(\ln x + 1) \), and: \( \frac{d}{dx}(\ln x + 1) = \frac{1}{x} \)</p><p>Thus: \( y'' = x^x(\ln x + 1)(\ln x + 1) + x^x \cdot \frac{1}{x} \) \( = x^x(\ln x + 1)^2 + x^{x-1} \)</p><p><strong>Step 4: Find \( y''(2) \)</strong></p><p>Now we substitute \( x = 2 \): \( y''(2) = 2^2(\ln 2 + 1)^2 + 2^{2-1} = 4(\ln 2 + 1)^2 + 2 \)</p><p><strong>Step 5: Calculate \( y''(2) - 2y'(2) \)</strong></p><p>Now we can calculate: \( y''(2) - 2y'(2) = (4(\ln 2 + 1)^2 + 2) - 2(4(\ln 2 + 1)) \) \( = 4(\ln 2 + 1)^2 + 2 - 8(\ln 2 + 1) \)</p><p><strong>Step 6: Simplify the expression</strong></p><p>Let’s simplify: \( = 4(\ln 2 + 1)^2 - 8(\ln 2 + 1) + 2 \)</p><p>This is a quadratic in terms of \( \ln 2 + 1 \): Let \( u = \ln 2 + 1 \): \( = 4u^2 - 8u + 2 \)</p><p><strong>Step 7: Factor or use the quadratic formula</strong></p><p>We can use the quadratic formula: \( = 4(u^2 - 2u + \frac{1}{2}) = 4\left((u - 1)^2 - \frac{1}{2}\right) \)</p><p><strong>Final Result</strong></p><p>Thus, the final answer is: \( y''(2) - 2y'(2) = 4\left((\ln 2 + 1 - 1)^2 - \frac{1}{2}\right) = 4\left((\ln 2)^2 - \frac{1}{2}\right) \)</p>

05:41 04/07/2025

Indian Bike Driving 3D Cheat Codes

Indian Bike Driving 3D Cheat Codes

In this article, players will find all Indian Bike Driving 3D cheat codes.

05:42 04/07/2025

Sexy, Sexy, Sexy by Julio de la Rosa on Apple Music

Sexy, Sexy, Sexy by Julio de la Rosa on Apple Music

Music Video · 2011 · Duration 3:05

05:44 04/07/2025

Best Eyewear Store Online for Eyeglasses & Sunglasses | Chashmah "चश्मा"

Best Eyewear Store Online for Eyeglasses & Sunglasses | Chashmah "चश्मा"

Chashmah.com is Online Store for Eyeglasses, Sunglasses and Contact Lenses. Best Quality at Lowest Price. √Free Shipping √Cash on Delivery.

05:46 04/07/2025

Julio de la Rosa - Sexy Sexy Sexy Lyrics

Julio de la Rosa - Sexy Sexy Sexy Lyrics

Julio de la Rosa - Sexy Sexy Sexy Como amantes que acarician sin tocar Sin tocar, sin tocar Sus palabras no te dejan respirar Respirar, Y te a...

05:50 04/07/2025

brother-and-sister videos - XVIDEOS.COM

brother-and-sister videos - XVIDEOS.COM

XVIDEOS brother-and-sister videos, free

05:52 04/07/2025

Indian Bike Driving 3D Cheat Codes

Indian Bike Driving 3D Cheat Codes

In this article, players will find all Indian Bike Driving 3D cheat codes.

05:53 04/07/2025

Indian Bike Driving 3D Cheat Codes

Indian Bike Driving 3D Cheat Codes

In this article, players will find all Indian Bike Driving 3D cheat codes.

06:00 04/07/2025

Jake Paul vs. Mike Tyson

Jake Paul vs. Mike Tyson

Jake Paul vs. Mike Tyson was a heavyweight professional boxing match between YouTuber and professional boxer Jake Paul and former undisputed heavyweight world champion Mike Tyson. The bout took place on November 15, 2024, at the AT&T Stadium in Arlington, Texas, and was streamed globally on Netflix, with 65 million people watching the event concurrently[4][5] making it the most-streamed sporting event ever at the time.[6] Paul defeated Tyson via unanimous decision.[3]

06:01 04/07/2025

If y(x) = x^x , x gt 0 then y"(2) – 2y'(2) is equal to

If y(x) = x^x , x gt 0 then y"(2) – 2y'(2) is equal to

<p>To solve the problem, we need to find <span class="mjx-chtml MJXc-display" style="text-align: center;"><span class="mjx-math"><span class="mjx-mrow"><span class="mjx-msup"><span class="mjx-base" style="margin-right: -0.006em;"><span class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.225em; padding-bottom: 0.519em; padding-right: 0.006em;">y</span></span></span><span class="mjx-sup" style="font-size: 70.7%; vertical-align: 0.584em; padding-left: 0.082em; padding-right: 0.071em;"><span class="mjx-mo" style=""><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.298em; padding-bottom: 0.298em;">′′</span></span></span></span><span class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.446em; padding-bottom: 0.593em;">(</span></span><span class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.372em; padding-bottom: 0.372em;">2</span></span><span class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.446em; padding-bottom: 0.593em;">)</span></span><span class="mjx-mo MJXc-space2"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.298em; padding-bottom: 0.446em;">−</span></span><span class="mjx-mn MJXc-space2"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.372em; padding-bottom: 0.372em;">2</span></span><span class="mjx-msup"><span class="mjx-base" style="margin-right: -0.006em;"><span class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.225em; padding-bottom: 0.519em; padding-right: 0.006em;">y</span></span></span><span class="mjx-sup" style="font-size: 70.7%; vertical-align: 0.584em; padding-left: 0.082em; padding-right: 0.071em;"><span class="mjx-mo" style=""><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.298em; padding-bottom: 0.298em;">′</span></span></span></span><span class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.446em; padding-bottom: 0.593em;">(</span></span><span class="mjx-mn"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.372em; padding-bottom: 0.372em;">2</span></span><span class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.446em; padding-bottom: 0.593em;">)</span></span></span></span></span> for the function <span class="mjx-chtml MJXc-display" style="text-align: center;"><span class="mjx-math"><span class="mjx-mrow"><span class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.225em; padding-bottom: 0.519em; padding-right: 0.006em;">y</span></span><span class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.446em; padding-bottom: 0.593em;">(</span></span><span class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.225em; padding-bottom: 0.298em;">x</span></span><span class="mjx-mo"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.446em; padding-bottom: 0.593em;">)</span></span><span class="mjx-mo MJXc-space3"><span class="mjx-char MJXc-TeX-main-R" style="padding-top: 0.077em; padding-bottom: 0.298em;">=</span></span><span class="mjx-msubsup MJXc-space3"><span class="mjx-base"><span class="mjx-mi"><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.225em; padding-bottom: 0.298em;">x</span></span></span><span class="mjx-sup" style="font-size: 70.7%; vertical-align: 0.584em; padding-left: 0px; padding-right: 0.071em;"><span class="mjx-mi" style=""><span class="mjx-char MJXc-TeX-math-I" style="padding-top: 0.225em; padding-bottom: 0.298em;">x</span></span></span></span></span></span></span>.</p><p><strong>Step 1: Find \( y'(x) \)</strong></p><p>We start by differentiating \( y(x) = x^x \). To do this, we can use logarithmic differentiation.</p><p>1. Take the natural logarithm of both sides: \( \ln y = \ln(x^x) = x \ln x \)</p><p>2. Differentiate both sides with respect to \( x \): \( \frac{1}{y} \frac{dy}{dx} = \ln x + 1 \)</p><p>3. Multiply through by \( y \): \( y' = y(\ln x + 1) = x^x(\ln x + 1) \)</p><p><strong>Step 2: Find \( y'(2) \)</strong></p><p>Now we substitute \( x = 2 \): \( y'(2) = 2^2(\ln 2 + 1) = 4(\ln 2 + 1) \)</p><p><strong>Step 3: Find \( y''(x) \)</strong></p><p>Next, we differentiate \( y'(x) \) to find \( y''(x) \). We will use the product rule: \( y' = x^x(\ln x + 1) \)</p><p>Using the product rule: \( y'' = \frac{d}{dx}(x^x) \cdot (\ln x + 1) + x^x \cdot \frac{d}{dx}(\ln x + 1) \)</p><p>We already found \( \frac{d}{dx}(x^x) = x^x(\ln x + 1) \), and: \( \frac{d}{dx}(\ln x + 1) = \frac{1}{x} \)</p><p>Thus: \( y'' = x^x(\ln x + 1)(\ln x + 1) + x^x \cdot \frac{1}{x} \) \( = x^x(\ln x + 1)^2 + x^{x-1} \)</p><p><strong>Step 4: Find \( y''(2) \)</strong></p><p>Now we substitute \( x = 2 \): \( y''(2) = 2^2(\ln 2 + 1)^2 + 2^{2-1} = 4(\ln 2 + 1)^2 + 2 \)</p><p><strong>Step 5: Calculate \( y''(2) - 2y'(2) \)</strong></p><p>Now we can calculate: \( y''(2) - 2y'(2) = (4(\ln 2 + 1)^2 + 2) - 2(4(\ln 2 + 1)) \) \( = 4(\ln 2 + 1)^2 + 2 - 8(\ln 2 + 1) \)</p><p><strong>Step 6: Simplify the expression</strong></p><p>Let’s simplify: \( = 4(\ln 2 + 1)^2 - 8(\ln 2 + 1) + 2 \)</p><p>This is a quadratic in terms of \( \ln 2 + 1 \): Let \( u = \ln 2 + 1 \): \( = 4u^2 - 8u + 2 \)</p><p><strong>Step 7: Factor or use the quadratic formula</strong></p><p>We can use the quadratic formula: \( = 4(u^2 - 2u + \frac{1}{2}) = 4\left((u - 1)^2 - \frac{1}{2}\right) \)</p><p><strong>Final Result</strong></p><p>Thus, the final answer is: \( y''(2) - 2y'(2) = 4\left((\ln 2 + 1 - 1)^2 - \frac{1}{2}\right) = 4\left((\ln 2)^2 - \frac{1}{2}\right) \)</p>

06:07 04/07/2025

brother-and-sister videos - XVIDEOS.COM

brother-and-sister videos - XVIDEOS.COM

XVIDEOS brother-and-sister videos, free

06:09 04/07/2025

Ang Mutya Ng Section E (BOOK 2) - Vietsub - Chương 228

Ang Mutya Ng Section E (BOOK 2) - Vietsub - Chương 228

Read Chương 228 from the story Ang Mutya Ng Section E (BOOK 2) - Vietsub by ZoeT0213 (Zoe.T) with 3,448 reads. jayjay, yuri, vietsub. Pov của Jay-jay Ồn ào quá...

06:12 04/07/2025

Girl And Dog Viral Video: Latest News, Photos, Videos on Girl And Dog Viral Video - NDTV.COM

Girl And Dog Viral Video: Latest News, Photos, Videos on Girl And Dog Viral Video - NDTV.COM

Find Girl And Dog Viral Video Latest News, Videos & Pictures on Girl And Dog Viral Video and see latest updates, news, information from NDTV.COM. Explore more on Girl And Dog Viral Video.

06:14 04/07/2025

Julio de la Rosa - Sexy Sexy Sexy Lyrics

Julio de la Rosa - Sexy Sexy Sexy Lyrics

Julio de la Rosa - Sexy Sexy Sexy Como amantes que acarician sin tocar Sin tocar, sin tocar Sus palabras no te dejan respirar Respirar, Y te a...

06:16 04/07/2025

  • ‹
  • 1
  • 2
  • ...
  • 277
  • 278
  • 279
  • ...
  • 454
  • 455
  • ›
india.tour.edu.vn

india.tour.edu.vn

Copyright © 2024 by india.tour.edu.vn